In cancer cells, glucose is often converted into lactic acid, which is known as the 'Warburg effect'. The reason that cancer cells have a higher rate of aerobic glycolysis, but not oxidative phosphorylation, remains largely unclear. Herein, we proposed an epigenetic mechanism of the Warburg effect. Fructose-1,6-bisphosphatase-1 (FBP1), which functions to antagonize glycolysis was downregulated through NF-kappaB pathway in Ras-transformed NIH3T3 cells. Restoration of FBP1 expression suppressed anchorage-independent growth, indicating the relevance of FBP1 downregulation in carcinogenesis. Indeed, FBP1 was downregulated in gastric carcinomas (P<0.01, n=22) and gastric cancer cell lines (57%, 4/7). Restoration of FBP1 expression reduced growth and glycolysis in gastric cancer cells. Moreover, FBP1 downregulation was reversed by pharmacological demethylation. Its promoter was hypermethylated in gastric cancer cell lines (57%, 4/7) and gastric carcinomas (33%, 33/101). Inhibition of NF-kappaB restored FBP1 expression, partially through demethylation of FBP1 promoter. Notably, Cox regression analysis revealed FBP1 promoter methylation as an independent prognosis predicator for gastric cancer (hazard ratio: 3.60, P=0.010). In summary, we found that NF-kappaB functions downstream of Ras to promote epigenetic downregulation of FBP1. Promoter methylation of FBP1 can be used as a new biomarker for prognosis prediction of gastric cancer. Such an important epigenetic link between glycolysis and carcinogenesis partly explains the Warburg effect.