Coupling of triamines with diisocyanates on Au(111) leads to the formation of polyurea networks

J Am Chem Soc. 2009 Nov 25;131(46):16706-13. doi: 10.1021/ja9043032.

Abstract

The surface-confined coupling reaction between melamine (1,3,5-triazine-2,4,6-triamine) and 1,4-phenylene diisocyanate has been investigated on Au(111) by scanning tunneling microscopy. Diisocyanate species are stabilized at the edges of melamine arrays and coupling reactions to form small urea oligomers may be initiated at room temperature. These oligomers are incorporated into the two-dimensional melamine array. Annealing accelerates the formation of larger oligomers with multiple urea linkages. The oligomers can themselves form ordered 2-D structures stabilized by intermolecular H-bonding. At higher annealing temperatures, oligomers containing as many as seven or eight urea linkages were identified. These oligomers were able to form 2-D porous structures via interoligomer H-bonding interactions. We discuss the composition of all of the phases observed and identify how covalent and noncovalent interactions stabilize each phase.