Aim: A digital PCR approach has recently been suggested to detect greater amounts of cell-free fetal DNA in maternal plasma than conventional real-time quantitative PCR (qPCR). Because the digital qPCR approach uses shorter PCR amplicons than the real-time qPCR assay, we investigated whether a real-time qPCR assay appropriately modified for such short amplicons would improve the detection of cell-free fetal DNA.
Method: We developed a novel universal-template (UT) real-time qPCR assay that was specific for the DYS14 sequence on Y chromosome and had a short amplicon size of 50 bp. We examined this "short" assay with 50 maternal plasma samples and compared the results with those for a conventional real-time qPCR assay of the same locus but with a longer amplicon (84 bp).
Results: Qualitatively, both assays detected male cell-free fetal DNA with the same specificity and detection capability. Quantitatively, however, the new UT real-time qPCR assay for shorter amplicons detected, on average, almost 1.6-fold more cell-free fetal DNA than the conventional real-time qPCR assay with longer amplicons.
Conclusions: The use of short PCR amplicons improves the detection of cell-free fetal DNA. This feature may prove useful in attempts to detect cell-free fetal DNA under conditions in which the amount of template is low, such as in samples obtained early in pregnancy.