Magnetic resonance imaging (MRI) and postmortem neuropathological studies have implicated the cerebellum in the pathophysiology of autism. Controversy remains, however, concerning the nature and the consistency of cerebellar alterations. MRI studies of the cross-sectional area of the vermis have found both decreases and no difference in autism groups. Volumetric analysis of the vermis, which is less prone to "plane of section artifacts" may provide a more reliable assessment of size differences but few such studies exist in the literature. Here we present the results of a volumetric analysis of the structure of the whole cerebellum and its components in children and adolescents with autism spectrum disorders. Structural MRI's were acquired from 62 male participants (7.5 to 18.5 years-old) who met criteria for the following age-matched diagnostic groups: low functioning autism, high functioning autism (HFA), Asperger syndrome, and typically developing children. When compared to controls, the midsagittal area of the vermis, or of subgroups of lobules, was not reduced in any of the autism groups. However, we did find that total vermis volume was decreased in the combined autism group. When examined separately, the vermis of only the HFA group was significantly reduced compared to typically developing controls. Neither IQ nor age predicted the size of the vermis within the autism groups. There were no differences in the volume of individual vermal lobules or cerebellar hemispheres. These findings are discussed in relation to the pathology of autism and to the fairly common alterations of vermal morphology in various neurodevelopmental disorders.