Salamander limb regeneration depends on local progenitors whose progeny are recruited to the new limb. We previously identified a Pax7(+) cell population in skeletal muscle whose progeny have the potential to contribute to the regenerating limb. However, the plasticity of individual Pax7(+) cells, as well as their recovery within the new limb, was unclear. Here, we show that Pax7(+) cells remain present after multiple rounds of limb amputation/regeneration. Pax7(+) cells are found exclusively within skeletal muscle in the regenerating limb and proliferate where the myofibers are growing. Pax7 is rapidly down-regulated in the blastema, and analyses of clonal derivatives show that Pax7(+) cell progeny are not restricted to skeletal muscle during limb regeneration. Our data suggest that the newt regeneration blastema is not entirely a composite of lineage-restricted progenitors. The results demonstrate that except for a transient and subsequently blunted increase, skeletal muscle satellite cells constitute a stable pool of reserve cells for multiple limb regeneration events.-Morrison, J. I., Borg, P., Simon, A. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration.