Investigation of sewer exfiltration using integral pumping tests and wastewater indicators

J Contam Hydrol. 2009 Nov 20;110(3-4):118-29. doi: 10.1016/j.jconhyd.2009.10.001. Epub 2009 Oct 15.

Abstract

Leaky sewers affect urban groundwater by the exfiltration of untreated wastewater. However, the impact of sewer exfiltration on the groundwater is poorly understood. Most studies on sewer exfiltration focus on water exfiltration, but not on the impact on groundwater quality. In this paper we present a new monitoring approach to estimate mass flow rates M(ex) of different wastewater indicators (WWIs) from leaky sewers by applying integral pumping tests (IPTs). The problem of detecting and assessing heterogeneous concentrations in the vicinity of leaky sewers can be overcome with the IPT approach by the investigation of large groundwater volumes up- and downstream of leaky sewers. The increase in concentrations downstream of a leaky sewer section can be used to calculate M(ex) with a numerical groundwater model. The new monitoring approach was first applied using four IPT wells in Leipzig (Germany). Over a pumping period of five days we sampled five inorganic WWIs: B , Cl(-), K+, NO3(-), NH4+ and three xenobiotics: bisphenol-a, caffeine and tonalide. The resulting concentration-time series indicated an influence of wastewater at one IPT well downstream of the leaky sewer. We defined ranges of M(ex) by implementing the uncertainty of chemical analyses. The results showed a M(ex) of 0-10.9 g m(-1) d(-1). The combination of M(ex) with wastewater concentrations from the target sewer yielded an exfiltration rate Q(ex) of 28.0-63.9 Lm(-1)d(-1) for the conservative ion Cl(-). Most non-conservative WWIs showed reduced mass flow rates in the groundwater downstream of the leaky sewer that indicate a mass depletion during their passage from the sewer to the pumping well. Application of the IPT methodology at other field sites is possible. The IPT monitoring approach provides reliable M(ex) values that can help to assess the impact of leaky sewers on groundwater.

MeSH terms

  • Environmental Monitoring / methods*
  • Waste Disposal, Fluid*