Computational design of second-site suppressor mutations at protein-protein interfaces

Proteins. 2010 Mar;78(4):1055-65. doi: 10.1002/prot.22631.

Abstract

The importance of a protein-protein interaction to a signaling pathway can be established by showing that amino acid mutations that weaken the interaction disrupt signaling, and that additional mutations that rescue the interaction recover signaling. Identifying rescue mutations, often referred to as second-site suppressor mutations, controls against scenarios in which the initial deleterious mutation inactivates the protein or disrupts alternative protein-protein interactions. Here, we test a structure-based protocol for identifying second-site suppressor mutations that is based on a strategy previously described by Kortemme and Baker. The molecular modeling software Rosetta is used to scan an interface for point mutations that are predicted to weaken binding but can be rescued by mutations on the partner protein. The protocol typically identifies three types of specificity switches: knob-in-to-hole redesigns, switching hydrophobic interactions to hydrogen bond interactions, and replacing polar interactions with nonpolar interactions. Computational predictions were tested with two separate protein complexes; the G-protein Galpha(i1) bound to the RGS14 GoLoco motif, and UbcH7 bound to the ubiquitin ligase E6AP. Eight designs were experimentally tested. Swapping a buried hydrophobic residue with a polar residue dramatically weakened binding affinities. In none of these cases were we able to identify compensating mutations that returned binding to wild-type affinity, highlighting the challenges inherent in designing buried hydrogen bond networks. The strongest specificity switches were a knob-in-to-hole design (20-fold) and the replacement of a charge-charge interaction with nonpolar interactions (55-fold). In two cases, specificity was further tuned by including mutations distant from the initial design. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology
  • Hydrogen Bonding
  • Hydrophobic and Hydrophilic Interactions
  • Models, Molecular
  • Protein Binding / genetics
  • Protein Binding / physiology
  • Protein Structure, Secondary
  • Proteins / chemistry*
  • Proteins / genetics*
  • Proteins / metabolism
  • Suppression, Genetic / genetics
  • Suppression, Genetic / physiology*

Substances

  • Proteins