Elemental carbon has been proposed as a marker of diesel particulate matter. The objective of this study was to investigate if water-soluble carbonaceous compounds could be responsible for positive bias of elemental carbon using NIOSH Method 5040 with a thermo-optical carbon transmittance analyzer. Filter samples from eight different aerosol environments were used: pure diesel exhaust fume with a high content of elemental carbon, pure diesel exhaust fume with a low content of elemental carbon, pure biodiesel exhaust fume, pure woodsmoke, an urban road tunnel, an urban street canyon, an urban background site, and residential woodburning in an urban area. Part of each filter sample was analyzed directly with a thermo-optical carbon analyzer, and another part was extracted with water. This water-soluble extract was filtered to remove particles, spiked onto filter punches, and analyzed with a thermo-optical transmittance carbon analyzer. The ratio of elemental carbon in the water-soluble extract to the particulate sample measurement was 18, 12, and 7%, respectively, for the samples of pure woodsmoke, residential woodburning, and urban background. Samples with diesel particulate matter and ambient samples with motor exhaust detected no elemental carbon in the water-soluble extract. Since no particles were present in the filtered water-soluble extract, part of the water-soluble organic carbon species, existing or created during analysis, are misclassified as elemental carbon with this analysis. The conclusion is that in measuring elemental carbon in particulate aerosol samples with thermo-optical transmittance analysis, woodsmoke, and biomass combustion samples show a positive bias of elemental carbon. The water-soluble EC could be used as a simple method to indicate other sources, such as wood or other biomass combustion aerosol particles.