Evolution of the Fermi surface of the electron-doped high-temperature superconductor Nd(2-x)Ce(x)CuO(4) revealed by Shubnikov-de Haas oscillations

Phys Rev Lett. 2009 Oct 9;103(15):157002. doi: 10.1103/PhysRevLett.103.157002. Epub 2009 Oct 5.

Abstract

We report on the direct probing of the Fermi surface in the bulk of the electron-doped superconductor Nd(2-x)Ce(x)CuO(4) at different doping levels by means of magnetoresistance quantum oscillations. Our data reveal a sharp qualitative change in the Fermi surface topology, due to translational symmetry breaking in the electronic system which occurs at a critical doping level significantly exceeding the optimal doping. This result implies that the (pi/a, pi/a) ordering, known to exist at low doping levels, survives up to the overdoped superconducting regime.