In situ hybridization to cytogenetic bands of yeast artificial chromosomes covering 50% of human Xq24-Xq28 DNA

Am J Hum Genet. 1991 Feb;48(2):183-94.

Abstract

From the collection described by Abidi et al., 102 yeast artificial chromosomes (YACs) with human DNA inserts more than 300 kb in length were assigned to chromosomal band positions on early metaphase chromosomes by in situ hybridization using the biotin-avidin method. All the YACs hybridized within the Xq24-Xqter region, supporting the origin of the vast majority of the YACs from single human X-chromosomal sites. With assignments precise to +/- 0.5 bands, YACs were distributed among cytogenetic bands to roughly equal extents. Thus, there is no gross bias in the cloning of DNA from different bands into large YACs. To test band assignments further, hybridizations were carried out blind, and band positions were then compared with (1) probe localizations in cases in which a reported location was present in one of the YACs; (2) cross-hybridization of a labeled YAC with others in the collection; and (3) hybridization to a panel of DNAs from a series of hybrid cells containing Xq DNA truncated at various regions. Of 31 cases in which YACs contained a probe with a previously reported location, 28 in situ assignments were in agreement, and 14 other assignments, including one of the three discordant with probe localization, were confirmed by YAC cross-hybridization studies. Results with a group of nine YACs were further confirmed with a panel of somatic cell hybrid DNAs from that region. Five YACs hybridized both to Xq25 and to a second site (four in Xq27 and one in Xq28), suggestive of some duplication of DNA of the hybrid cell and perhaps in normal X chromosomes. The in situ assignments are thus sufficient to place YACs easily and systematically within bins of about 7-10 Mb and to detect some possible anomalies. Furthermore, on the basis of expectations for random cloning of DNA in YACs, the assigned YACs probably cover more than 50% of the total Xq24-Xq28 region. This provides one way to initiate the assembly of YAC contigs over extended chromosomal regions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • Blotting, Southern
  • Chromosome Banding
  • Chromosomes, Fungal
  • Cross Reactions
  • DNA / genetics*
  • Electrophoresis, Polyacrylamide Gel
  • Gene Library
  • Genome, Human
  • Humans
  • Karyotyping
  • Metaphase
  • Molecular Sequence Data
  • Nucleic Acid Hybridization
  • Polymerase Chain Reaction
  • X Chromosome*

Substances

  • DNA