Background & aims: Hepatocellular carcinoma (HCC) is a particularly vascularized solid tumor where the Raf/MEK/ERK pathway is activated; suggesting that inhibition of this pathway may have therapeutic potential.
Methods: We treated patient-derived HCC xenografts with (i) sorafenib, (ii) AZD6244 (ARRY-142886), and (iii) sorafenib plus AZD6244. Western blotting was employed to determine pharmacodynamic changes in biomarkers relevant to both angiogenesis and MEK signaling. Apoptosis, microvessel density, and cell proliferation were analyzed by immunohistochemistry.
Results: We report here that sorafenib treatment resulted in suppression of tumor growth, reduction in cell proliferation, induction of apoptosis and inhibition of mTOR targets. Sorafenib-induced elevation of the insulin-like growth factor receptor 1 (IGF-1R), phospho-c-Raf Ser338, phospho-MEK Ser217/221 and phospho-ERK Thr202/Tyr204 was attenuated by co-treating cells with anti-human IGF-1R antibody or over-expression of activated mutant p70S6K. Pharmacological inhibition of the MEK/ERK pathway by AZD6244 enhanced the anti-tumor effect of sorafenib in both orthotopic and ectopic models of HCC. Such inhibition led to a further increase in pro-apoptotic Bim, apoptosis and a profound inhibition of cell proliferation.
Conclusion: Our findings underscore the potential of a combined therapeutic approach with sorafenib and MEK inhibitors in the treatment of HCC.