Killing of adherent oral microbes by a non-thermal atmospheric plasma jet

J Med Microbiol. 2010 Feb;59(Pt 2):206-212. doi: 10.1099/jmm.0.013714-0. Epub 2009 Nov 12.

Abstract

Atmospheric plasma jets are being intensively studied with respect to potential applications in medicine. The aim of this in vitro study was to test a microwave-powered non-thermal atmospheric plasma jet for its antimicrobial efficacy against adherent oral micro-organisms. Agar plates and dentin slices were inoculated with 6 log(10) c.f.u. cm(-2) of Lactobacillus casei, Streptococcus mutans and Candida albicans, with Escherichia coli as a control. Areas of 1 cm(2) on the agar plates or the complete dentin slices were irradiated with a helium plasma jet for 0.3, 0.6 or 0.9 s mm(-2), respectively. The agar plates were incubated at 37 degrees C, and dentin slices were vortexed in liquid media and suspensions were placed on agar plates. The killing efficacy of the plasma jet was assessed by counting the number of c.f.u. on the irradiated areas of the agar plates, as well as by determination of the number of c.f.u. recovered from dentin slices. A microbe-killing effect was found on the irradiated parts of the agar plates for L. casei, S. mutans, C. albicans and E. coli. The plasma-jet treatment reduced the c.f.u. by 3-4 log(10) intervals on the dentin slices in comparison to recovery rates from untreated controls. The microbe-killing effect was correlated with increasing irradiation times. Thus, non-thermal atmospheric plasma jets could be used for the disinfection of dental surfaces.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / ultrastructure
  • Bacterial Adhesion / physiology*
  • Bacterial Physiological Phenomena
  • Dental Equipment*
  • Dentin*
  • Disinfection / methods
  • Pressure