Methylglyoxal (MGO) is a cytotoxic metabolite and modifies tissue proteins through the Maillard reaction, resulting in advanced glycation end products (AGEs), which can alter protein structure and functions. Several MGO-derived AGEs have been described, including argpyrimidine, a fluorescent product of the MGO reaction with arginine residues. Herein, we evaluated the cytotoxic role of MGO in human lens epithelial cell line (HLE-B3). HLE-B3 cells were exposed to 400 microM MGO in the present or absence of pyridoxamine for 24h. We then examined the formation of argpyrimidine, apoptosis and oxidative stress in HLE-B3 cells. In MGO-treated HLE-B3 cells, the accumulation of argpyrimidine was markedly increased, and caspase-3 and 8-hydroxydeoxyguanosine (8-OHdG) were highly expressed, which paralleled apoptotic cell death. However, pyridoxamine (AGEs inhibitor) prevented the argpyrimidine formation and apoptosis of MGO-treated HLE-B3 cells. These results suggested that the accumulation of argpyrimidine and oxidative DNA damage caused by MGO are involved in apoptosis of HLE-B3 cells.
Copyright 2009 Elsevier Inc. All rights reserved.