Repetitive DNA and in particular transposable elements have been intimately linked to eukaryotic genomes for millions of years. Once overlooked for being only a collection of selfish debris and a nuisance for sequence assembly, genomic repeats are now being recognized as a key driving force in genome evolution. Indeed, by changing the DNA landscape of genomes, transposable elements have been a rich source of innovation in genes, regulatory elements and genome structures. In this review, I will focus on recent advances that demonstrate that genomic repeats have had a global impact on vertebrate gene regulatory networks. I will also summarize results that show how transposable elements have been a major catalyst of structural rearrangements throughout evolution.