Systemic lupus erythematosus (SLE) is a complex autoimmune disease affecting various tissues. Involvement of B and T cells as well as increased cytokine levels have been associated with disease manifestation. Recently, we demonstrated that mice with epidermal loss of JunB (JunB(Deltaep)) develop a myeloproliferative syndrome (MPS) due to high levels of G-CSF which are secreted by JunB-deficient keratinocytes. In addition, we show that JunB(Deltaep) mice develop a SLE phenotype linked to increased epidermal interleukin 6 (IL-6) secretion. Intercrosses with IL-6-deficient mice could rescue the SLE phenotype. Furthermore, we show that JunB binds to the IL-6 promoter and transcriptionally suppresses IL-6. Facial skin biopsies of human SLE patients similarly revealed low JunB protein expression and high IL-6, activated Stat3, Socs-1, and Socs-3 levels within lupus lesions. Thus, keratinocyte-induced IL-6 secretion can cause SLE and systemic autoimmunity. Our results support trials to use alpha-IL-6 receptor antibody therapy for treatment of SLE.