Automated segmentation of routine clinical cardiac magnetic resonance imaging for assessment of left ventricular diastolic dysfunction

Circ Cardiovasc Imaging. 2009 Nov;2(6):476-84. doi: 10.1161/CIRCIMAGING.109.879304. Epub 2009 Sep 21.

Abstract

Background: Cardiac magnetic resonance (CMR) is established for assessment of left ventricular (LV) systolic function but has not been widely used to assess diastolic function. This study tested performance of a novel CMR segmentation algorithm (LV-METRIC) for automated assessment of diastolic function.

Methods and results: A total of 101 patients with normal LV systolic function underwent CMR and echocardiography (echo) within 7 days. LV-METRIC generated LV filling profiles via automated segmentation of contiguous short-axis images (204+/-39 images, 2:04+/-0:53 minutes). Diastolic function by CMR was assessed via early:atrial filling ratios, peak diastolic filling rate, time to peak filling rate, and a novel index-diastolic volume recovery (DVR), calculated as percent diastole required for recovery of 80% stroke volume. Using an echo standard, patients with versus without diastolic dysfunction had lower early:atrial filling ratios, longer time to peak filling rate, lower stroke volume-adjusted peak diastolic filling rate, and greater DVR (all P<0.05). Prevalence of abnormal CMR filling indices increased in relation to clinical symptoms classified by New York Heart Association functional class (P=0.04) or dyspnea (P=0.006). Among all parameters tested, DVR yielded optimal performance versus echo (area under the curve: 0.87+/-0.04, P<0.001). Using a 90% specificity cutoff, DVR yielded 74% sensitivity for diastolic dysfunction. In multivariate analysis, DVR (odds ratio, 1.82; 95% CI, 1.13 to 2.57; P=0.02) was independently associated with echo-evidenced diastolic dysfunction after controlling for age, hypertension, and LV mass (chi(2)=73.4, P<0.001).

Conclusions: Automated CMR segmentation can provide LV filling profiles that may offer insight into diastolic dysfunction. Patients with diastolic dysfunction have prolonged diastolic filling intervals, which are associated with echo-evidenced diastolic dysfunction independent of clinical and imaging variables.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Algorithms*
  • Automation
  • Chi-Square Distribution
  • Diastole
  • Echocardiography, Doppler
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Logistic Models
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Prospective Studies
  • ROC Curve
  • Sensitivity and Specificity
  • Stroke Volume
  • Ventricular Function, Left / physiology*