Presenilin transgenic mice as models of Alzheimer's disease

Brain Struct Funct. 2010 Mar;214(2-3):127-43. doi: 10.1007/s00429-009-0227-3. Epub 2009 Nov 18.

Abstract

Mutations in presenilin-1 (PS1) and presenilin-2 (PS2) cause familial Alzheimer's disease (FAD). Presenilins influence multiple molecular pathways and are best known for their role in the gamma-secretase cleavage of type I transmembrane proteins including the amyloid precursor protein (APP). PS1 and PS2 FAD mutant transgenic mice have been generated using a variety of promoters. PS1-associated FAD mutations have also been knocked into the endogenous mouse gene. PS FAD mutant mice consistently show elevations of Abeta42 with little if any effect on Abeta40. When crossed with plaque forming APP FAD mutant lines, the PS1 FAD mutants cause earlier and more extensive plaque deposition. Although single transgenic PS1 or PS2 mice do not form plaques, they exhibit a number of pathological features including age-related neuronal and synaptic loss as well as vascular pathology. They also exhibit increased susceptibility to excitotoxic injury most likely on the basis of exaggerated calcium release from the endoplasmic reticulum. Electrophysiologically long-term potentiation in the hippocampus is increased in young PS1 FAD mutant mice but this effect appears to be lost with aging. In most studies neurogenesis in the adult hippocampus is also impaired by PS1 FAD mutants. Mice in which PS1 has been conditionally knocked out in adult forebrain on a PS2 null background (PS1/2 cDKO) develop a striking neurodegeneration that mimics AD neuropathology in being associated with neuronal and synaptic loss, astrogliosis and hyperphosphorylation of tau, although it is not accompanied by plaque deposits. The relevance of PS transgenic mice as models of AD is discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Alzheimer Disease / genetics*
  • Alzheimer Disease / metabolism
  • Alzheimer Disease / physiopathology
  • Animals
  • Brain Chemistry / genetics*
  • Disease Models, Animal*
  • Hippocampus / metabolism
  • Hippocampus / pathology
  • Hippocampus / physiopathology
  • Long-Term Potentiation / genetics
  • Mice
  • Mice, Transgenic / genetics*
  • Nerve Degeneration / genetics
  • Nerve Degeneration / metabolism
  • Nerve Degeneration / physiopathology
  • Plaque, Amyloid / genetics
  • Plaque, Amyloid / metabolism
  • Presenilins / genetics*

Substances

  • Presenilins