Effect of zinc oxide doping on the structural and optical characterization of nanostructured molybdenum oxide films

J Nanosci Nanotechnol. 2009 Sep;9(9):5254-61. doi: 10.1166/jnn.2009.1163.

Abstract

Undoped and zinc oxide (ZnO) doped molybdenum oxide (MoO3) films were prepared by RF magnetron sputtering technique. The influence of doping and post annealing temperature on the structural and optical properties of these films were investigated systematically using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-VIS spectroscopy and photoluminescence spectroscopy (PL). The XRD patterns indicate the presence of stoichiometric orthorhombic alpha-MoO3 phase in the annealed (573 and 673 K) undoped molybdenum oxide films and in ZnO doped molybdenum oxide film (annealed at 673 K). The crystalline grain size in the films was investigated using Debye Scherrer formula and corrected using Hall-Williamson equation. The SEM and AFM images revealed the distribution of nano leafs, nanorods and nanograins. Nanorods of length 1.4 microm and diameter 149 nm can be observed in ZnO doped films. The optical band gap energy was found to increase with increase in annealing temperature and particle size. These nanostructures show a room temperature PL emission in the UV and visible region.