Sequence-specific resonance assignments for the isolated second or b domain of the bovine seminal fluid protein PDC-109 have been obtained from analysis of two-dimensional 1H NMR experiments recorded at 500 MHz. These assignments include the identification of all aromatic and most aliphatic amino acid resonances. Stereospecific assignment of resonances stemming from the Val2 CH3 gamma,gamma' groups and from seven CH beta,beta' geminal pairs has been accomplished by analysis of 3J alpha beta coupling constants in conjunction with patterns of cross-peak intensities observed in two-dimensional nuclear Overhauser effect (NOESY) spectra. Analysis of NOESY and 3J alpha NH data reveals a small antiparallel beta-sheet involving stretches containing residues 25-28 and 39-42, a cis-proline residue (Pro4), antiparallel strands consisting of residues 1-3, 5-7, and 10-13, and an aromatic cluster composed of Tyr7, Trp26, and Tyr33. The results of distance geometry and restrained molecular dynamics calculations indicate that the global fold of the PDC-109 b domain, a type II module related to those found in fibronectin, is somewhat different from that predicted by modeling the structure on the basis of homology between type II and kringle units. A shallow depression in the molecular surface which presents a solvent-exposed hydrophobic area--a potential ligand-binding site-is identified in the NMR-based models.