Objectives: Contrast-enhanced cardiac magnetic resonance (CMR) for infarct sizing has been validated in large animals, but studies and follow-up are restricted. We sought to (1) validate CMR for assessment of myocardial area at risk (MAR) and infarct size (IS) in a rabbit model of reperfused myocardial infarction (MI); (2) analyse the relation between ischaemic substrates and subsequent left ventricular (LV) remodelling.
Methods: Experimental reperfused acute MI was induced in 16 rabbits. Ten animals underwent cross-registered cine and contrast-enhanced CMR and histopathology at day 3 for assessment of MAR and IS (group 1). The remaining six rabbits underwent serial CMR for the study of LV remodelling (group 2).
Results: In group 1, mean IS was 12.7 +/- 6.4% and 12.7 +/- 6.9% of total LV myocardial mass on CMR (late-enhancement technique) and histopathology (P = 0.52; r = 0.93). No significant difference occurred between CMR and histopathology for the calculation of MAR and IS/MAR ratio (P = 0.18 and P = 0.17), whereas correlations were strong (r = 0.92 and r = 0.95). In group 2, mean LV end-diastolic, end-systolic volumes and LV mass were significantly increased at 3 weeks compared with measurements at day 3 (P < 0.01). Significant correlations between initial IS and the increase in LV end-diastolic volume (r = 0.66) and the increase in LV mass (r = 0.48) were observed, as well as correlations between initial MAR and the increase in LV end-diastolic volume (r = 0.70) and the increase in LV mass (r = 0.37).
Conclusions: Comprehensive CMR provides accurate assessment of IS and MAR in reperfused rabbit MI. Infarct size is closely related to LV remodelling. Through the infarct size/MAR ratio, this approach has great potential for assessing interventions aimed at cardioprotection.