The atomic level mechanism of incorporation of Zn(2+) into hydroxyapatite (HAp), which is a potential dopant to promote bone formation, was investigated, based on first principles total energy calculations and experimental X-ray absorption near edge structure (XANES) analyses. It was found that Zn(2+)-doped HAp tends to have a Ca-deficient chemical composition and substitutional Zn(2+) ions are associated with a defect complex with a Ca(2+) vacancy and two charge compensating protons. Moreover, first principles calculations demonstrated that Zn(2+) incorporation into HAp can take place by occupying the Ca(2+) vacancy of the defect complex. The Ca(2+) vacancy complex is not only the origin of the calcium deficiency in HAp, but also plays a key role in the uptake of trace elements during mineralization.
Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.