Background: We used high-frequency stimulation delivered during the refractory period of the atrium and pulmonary veins (PVs) to induce focal firing and atrial fibrillation (AF). This study was designed to demonstrate that bilateral low-level vagosympathetic nerve stimulation (LL-VNS) could suppress high-frequency stimulation-induced focal AF at atrial and PV sites.
Methods and results: In 23 dogs anesthetized with Na-pentobarbital, electrodes in the vagosympathetic trunks allowed LL-VNS at 1 V below that which slowed the sinus rate or atrioventricular conduction. Multielectrode catheters were fixed at the right and left superior and inferior PVs and both atrial appendages. LL-VNS continued for 3 hours. At the end of each hour, the high-frequency stimulation algorithm consisting of a 40-ms train of stimuli (200 Hz; stimulus duration, 0.1 to 1.0 ms) was delivered 2 ms after the atrial pacing stimulus during the refractory period at each PV and atrial appendages site. The lowest voltage of high-frequency stimulation that induced AF was defined as the AF threshold. Five dogs without LL-VNS served as sham controls. Six dogs underwent LL-VNS after transection of bilateral vagosympathetic trunks. LL-VNS induced a progressive increase in AF threshold at all PV and atrial appendages sites, particularly significant (P<0.05) at the right superior PV, right inferior PV, left superior PV, and right atrial appendage. Bilateral vagosympathetic transection did not significantly alter the previous findings, and the 5 sham control dogs did not show changes in AF threshold at any site over a period of 3 hours.
Conclusions: LL-VNS may prevent episodic AF caused by rapid PV and non-PV firing.