EMG-based muscle model has many applications in human-machine interface and rehabilitation robotics. For the muscular force estimation, so-called Hill-type model has been used in most of the cases. It has already shown its promising performance, however it is known as a phenomenological model considering only macroscopic physiology. In this paper, we discuss EMG-force estimation with the full physiology based muscle model in voluntary contraction. In addition to Hill macroscopic representation, a microscopic physiology description as stated by Huxley and Zahalak is integrated. It has significant meaning to realize the same kind of EMG-force estimation with multiscale physiology based model not with a phenomenological Hill model, because it brings the understanding of the internal biophysical dynamics and new insights about neuromuscular activations.