Phosphorylation of the activation loop is one of the most common mechanisms for regulating protein kinase activity. The catalytic subunit of cAMP-dependent protein kinase autophosphorylates Thr(197) in the activation loop when expressed in Escherichia coli. Although mutation of Arg(194) to Ala prevents autophosphorylation, phosphorylation of Thr(197) can still be achieved by a heterologous protein kinase, phosphoinositide-dependent protein kinase (PDK1), in vitro. In this study, we examined the structural and functional consequences of adding a single phosphate to the activation loop of cAMP-dependent protein kinase by comparing the wild type C-subunit to the R194A mutant either in the presence or the absence of activation loop phosphorylation. Phosphorylation of Thr(197) decreased the K(m) by approximately 15- and 7-fold for kemptide and ATP, respectively, increased the stability of the enzyme as measured by fluorescence and circular dichroism, and enhanced the binding between the C-subunit and IP20, a protein kinase inhibitor peptide. Additionally, deuterium exchange coupled to mass spectrometry was used to compare the structural dynamics of these proteins. All of the regions of the C-subunit analyzed underwent amide hydrogen exchange at a higher or equal rate in the unphosphorylated enzyme compared with the phosphorylated enzyme. The largest changes occurred at the C terminus of the activation segment in the p + 1 loop/APE regions and the alphaH-alphaI loop motifs and leads to the prediction of a coordinated phosphorylation-induced salt bridge between two conserved residues, Glu(208) and Arg(280).