Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis

Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):163-8. doi: 10.1073/pnas.0908714107. Epub 2009 Dec 4.

Abstract

Amyloid fibers are filamentous protein structures commonly associated with neurodegenerative diseases. Unlike disease-associated amyloids, which are the products of protein misfolding, Escherichia coli assemble membrane-anchored functional amyloid fibers called curli. Curli fibers are composed of two proteins, CsgA and CsgB. In vivo, the polymerization of the major curli subunit protein, CsgA, is dependent on CsgB-mediated nucleation. The amyloid core of CsgA features five imperfect repeats (R1-R5), and R1 and R5 govern CsgA responsiveness to CsgB nucleation and self-seeding by CsgA fibers. Here, the specificity of bacterial amyloid nucleation was probed, revealing that certain aspartic acid and glycine residues inhibit the intrinsic aggregation propensities and nucleation responsiveness of R2, R3, and R4. These residues function as "gatekeepers" to modulate CsgA polymerization efficiency and potential toxicity. A CsgA molecule lacking gatekeeper residues polymerized in vitro significantly faster than wild-type CsgA and polymerized in vivo in the absence of the nucleation machinery, resulting in mislocalized fibers. This uncontrolled polymerization was associated with cytotoxicity, suggesting that incorrectly regulated CsgA polymerization was detrimental to the cell.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence*
  • Amyloid / biosynthesis*
  • Amyloid / chemistry
  • Amyloid / genetics
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins* / chemistry
  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • Molecular Sequence Data
  • Protein Conformation
  • Protein Folding
  • Protein Subunits / genetics*
  • Protein Subunits / metabolism
  • Sequence Alignment

Substances

  • Amyloid
  • CsgB protein, E coli
  • Escherichia coli Proteins
  • Protein Subunits
  • csgA protein, E coli