The E2F1 transcription factor enhances apoptosis by DNA damage in tumors lacking p53. To elucidate the mechanism of a potential cooperation between E2F1 and chemotherapy, whole-genome microarrays of chemoresistant tumor cell lines were performed focusing on the identification of cooperation response genes (CRG). This gene class is defined by a synergistic expression response upon endogenous E2F1 activation and drug treatment. Cluster analysis revealed an expression pattern of CRGs similar to E2F1 mono-therapy, suggesting that chemotherapeutics enhance E2F1-dependent gene expression at the transcriptional level. Using this approach as a tool to explore E2F1-driven gene expression in response to anticancer drugs, we identified novel apoptosis genes such as the tumor suppressor TIEG1/KLF10 as direct E2F1 targets. We show that TIEG1/KLF10 is transcriptionally activated by E2F1 and crucial for E2F1-mediated chemosensitization of cancer cells. Our results provide a broader picture of E2F1-regulated genes in conjunction with cytotoxic treatment that allows the design of more rational therapeutics.