Oxidative damage to DNA has long been associated with aging and disease, with guanine serving as the primary target for oxidation owing to its low ionization potential. Emerging evidence points to a critical role for sequence context as a determinant of the guanine ionization potential and the associated chemical reactivity of the guanine, as well as the spectrum of damage products that arise from oxidation. Recent studies also suggest that the generally accepted model of oxidation hotspots in runs of guanine bases may not hold for biologically relevant oxidants. One of the primary methods used to address these important problems of sequence context utilizes gel electrophoresis to identify the location and quantity of base damage arising in model oligonucleotides. However, this approach has limited study to those agents that produce few strand breaks arising from deoxyribose oxidation, while ionizing radiation, Fenton chemistry and other biologically relevant oxidants produce sizeable proportions of both base and sugar damage. To this end, we have developed a universal method to quantify sequence context effects on nucleobase damage without interference by strand breaks from deoxyribose oxidation.