[(11)C]NNC112 (8-chloro-7-hydroxy-3-methyl-5-(7-benzofuranyl)-2,3,4,5-tetrahydro-IH-3-benzazepine), a selective positron-emission tomography (PET) ligand for the D(1) receptor (R) over the 5-HT(2A) R in vitro, has shown lower selectivity in vivo, hampering measurement of D(1) R in the cortex. [(11)C]NNC112 PET and intravenous (i.v) ketanserin challenge were used to (1) confirm the previous findings of [(11)C]NNC112 in vivo D(1) R selectivity, and (2) develop a feasible methodology for imaging cortical D(1) R without contamination by 5-HT(2A) R. Seven healthy volunteers underwent [(11)C]NNC112 PET scans at baseline and after a 5-HT(2A) R-blocking dose of ketanserin (0.15 mg/kg, i.v.). Percent BP(ND) change between the post-ketanserin and baseline scans was calculated. Irrespective of the quantification method used, ketanserin pretreatment led to significant decrease of BP(ND) in the cortical (approximately 30%) and limbic regions (approximately 20%) but not in the striatum, which contains a much lower amount of 5-HT(2A) R. Therefore, ketanserin allows D(1) R signal to be detected by [(11)C]NNC112 PET without significant 5-HT(2A) R contamination. These data confirm the presence of a significant 5-HT(2A) R contribution to cortical [(11)C]NNC112 signal, and call for caution in the interpretation of published [(11)C]NNC112 PET findings on cortical D(1) R in humans. In the absence of more selective ligands, [(11)C]NNC112 PET with ketanserin can be used for cortical D(1) R imaging in vivo.