NVP-AUY922, a potent heat shock protein (HSP) 90 inhibitor, downregulates the expression of many oncogenic proteins, including the human epidermal growth factor receptor-2 (HER2). Because HER2 downregulation is a potential biomarker for early response to HSP90-targeted therapies, we used the (89)Zr-labelled HER2 antibody trastuzumab to quantify the alterations in HER2 expression after NVP-AUY922 treatment with HER2 positron emission tomography (PET) imaging. The HER2 overexpressing human SKOV-3 ovarian tumour cell line was used for in vitro experiments and as xenograft model in nude athymic mice. In vitro HER2 membrane expression was assessed by flow cytometry and a radio-immuno assay with (89)Zr-trastuzumab. For in vivo evaluation, mice received 50mg/kg NVP-AUY922 intraperitoneally every other day. (89)Zr-trastuzumab was injected intravenously 6d before NVP-AUY922 treatment and after 3 NVP-AUY922 doses. MicroPET imaging was performed at 24, 72 and 144h post tracer injection followed by ex-vivo biodistribution and immunohistochemical staining. After 24h NVP-AUY922 treatment HER2 membrane expression showed profound reduction with flow cytometry (80%) and radio-immuno assay (75%). PET tumour quantification, showed a mean reduction of 41% (p=0.0001) in (89)Zr-trastuzumab uptake at 144h post tracer injection after NVP-AUY922 treatment. PET results were confirmed by ex-vivo (89)Zr-trastuzumab biodistribution and HER2 immunohistochemical staining. NVP-AUY922 effectively downregulates HER2, which can be monitored and quantified in vivo non-invasively with (89)Zr-trastuzumab PET. This technique is currently under clinical evaluation and might serve as an early biomarker for HSP90 inhibition in HER2 positive metastatic breast cancer patients.
Copyright (c) 2009 Elsevier Ltd. All rights reserved.