The effects of advanced age and cognitive resources on the course of skill acquisition are unclear, and discrepancies among studies may reflect limitations of data analytic approaches. We applied a multilevel negative exponential model to skill acquisition data from 80 trials (four 20-trial blocks) of a pursuit rotor task administered to healthy adults (19-80 years old). The analyses conducted at the single-trial level indicated that the negative exponential function described performance well. Learning parameters correlated with measures of task-relevant cognitive resources on all blocks except the last and with age on all blocks after the second. Thus, age differences in motor skill acquisition may evolve in 2 phases: In the first, age differences are collinear with individual differences in task-relevant cognitive resources; in the second, age differences orthogonal to these resources emerge.