Tobacco smoking is responsible for death of many people each year and increases the risk of developing numerous disorders, particularly cardiovascular disease and cancer. Among the components of cigarette smoke, nicotine is known to excert proatherosclerotic, prothrombotic and proangiogenic effects on vascular endothelial cells. The current study was designed to investigate the mechanisms by which nicotine induces endothelial dysfunction and further to examine whether melatonin protects against nicotine-induced vasculopathy. Four groups of male rats (controls, melatonin-treated, nicotine treated [100 microg/mL in drinking water], and nicotine plus melatonin [5 mg/kg/day] treated) were used in this study. After 28 days all the animals were killed by decapitation and the aorta was removed. We evaluated the hydroxyproline content, and the different expression of proteins involved in several types of stress (ERK1/2), in fibrosis (TGF-beta1, NF-kappaB) and in recruitment of circulating leukocytes onto the vessel wall, including intercellular adhesion molecule-1 (ICAM-1) and vascular cellular adhesion molecule-1 (VCAM-1). These metabolic pathways are important in the development of nicotine-induced atherosclerosis and hypertension. Our results show that nicotine induces marked structural and functional alterations in the aorta. Nicotine receptor binding results in activation and phosphorylation of ERK 1/2. This enzyme, in turn, activates both TGF-beta1 and NF-kappaB; they stimulate respectively the synthesis of type I collagen, responsible of fibrosis, and moreover ICAM-1, VCAM-1 and reactive oxygen species. Based on these findings, melatonin is able to minimize the negative effects of nicotine by blocking the activation of ERK and the other signalling pathways in which this enzyme is involved.