We discuss an all-optical DPSK wavelength conversion scheme comprising a delay-interferometer demodulation stage followed by a Mach-Zehnder interferometer, the arms of which are formed by nonlinear waveguides. If operated properly, the configuration shows regenerative behaviour. This is true for nonlinear waveguides with a dominant cross-gain nonlinearity (e. g., for an electro-absorption amplitude modulator) as well as for the case of a dominant cross-phase nonlinearity (e. g., for Kerr effect based phase modulator). In addition, we show that nonlinear materials exhibiting cross-gain modulation properties can provide a binary phase response so far only known from the transfer functions of digital electronics.