Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis

Neuroimage. 2010 Apr 1;50(2):446-55. doi: 10.1016/j.neuroimage.2009.12.121. Epub 2010 Jan 7.

Abstract

A new semi-automatic method for segmenting the spinal cord from MR images is presented. The method is based on an active surface (AS) model of the cord surface, with intrinsic smoothness constraints. The model is initialized by the user marking the approximate cord center-line on a few representative slices, and the compact surface parametrization results in a rapid segmentation, taking on the order of 1 min. Using 3-D acquired T(1)-weighted images of the cervical spine from human controls and patients with multiple sclerosis, the intra- and inter-observer reproducibilities were evaluated, and compared favorably with an existing cord segmentation method. While the AS method overestimated the cord area by approximately 14% compared to manual outlining, correlations between cord cross-sectional area and clinical disability scores confirmed the relevance of the new method in measuring cord atrophy in multiple sclerosis. Segmentation of the cord from 2-D multi-slice T(2)-weighted images is also demonstrated over the cervical and thoracic region. Since the cord center-line is an intrinsic parameter extracted as part of the segmentation process, the image can be resampled such that the center-line forms one coordinate axis of a new image, allowing simple visualization of the cord structure and pathology; this could find wider application in standard radiological practice.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Algorithms
  • Atrophy / pathology
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Multiple Sclerosis / pathology*
  • Reproducibility of Results
  • Spinal Cord / pathology*