Fragmentation channels in dissociative electron recombination with hydronium and other astrophysically important species

J Phys Chem A. 2010 Apr 15;114(14):4870-4. doi: 10.1021/jp9104097.

Abstract

We report on our recent studies of dissociative recombination (DR) employing two different fragment imaging detection techniques at the TSR storage ring in Heidelberg, Germany. Principles of an upgraded 3D optical system and the new energy-sensitive multistrip detector (EMU) are explained together with possible applications in reaction dynamics studies. With the EMU imaging detector we succeeded to observe the branching ratios after DR of deuterated hydronium ions D(3)O(+) at energies of 0-0.5 and 4-21 eV. The branching ratios are almost constant at low energies while above 6 eV both oxygen-producing channels O + D + D + D and O + D(2) + D strongly increase and dominate by about 85% at 11 eV. To demonstrate further capabilities of our fragment imaging detectors, we also summarize some of our additional recent studies on DR of molecular ions important for astrophysics as well as for fundamental unimolecular dynamics.