Background: Over the last 10 years, DNA microarrays have achieved a robust analytical performance, enabling their use for analyzing the whole transcriptome or for screening thousands of single-nucleotide polymorphisms in a single experiment. DNA microarrays allow scientists to correlate gene expression signatures with disease progression, to screen for disease-specific mutations, and to treat patients according to their individual genetic profiles; however, the real key is proteins and their manifold functions. It is necessary to achieve a greater understanding of not only protein function and abundance but also their role in the development of diseases. Protein concentrations have been shown to reflect the physiological and pathologic state of an organ, tissue, or cells far more directly than DNA, and proteins can be profiled effectively with protein microarrays, which require only a small amount of sample material.
Content: Protein microarrays have become well-established tools in basic and applied research, and the first products have already entered the in vitro diagnostics market. This review focuses on protein microarray applications for biomarker discovery and validation, disease diagnosis, and use within the area of personalized medicine.
Summary: Protein microarrays have proved to be reliable research tools in screening for a multitude of parameters with only a minimal quantity of sample and have enormous potential in applications for diagnostic and personalized medicine.