An aqueous mixture of goethite, quartz, and lead chloride (PbCl(2)) was treated with the sulfate-reducing bacterium, Desulfovibrio desulfuricans G20 (D. desulfuricans G20), in a medium specifically designed to assess metal toxicity. In the presence of 26 muM of soluble Pb, together with the goethite and quartz, D. desulfuricans G20 grew after a lag time of 5 days compared to 2 days in Pb-, goethite-, and quartz-free treatments. In the absence of goethite and quartz, however, with 26 microM soluble Pb, no measurable growth was observed. Results showed that D. desulfuricans G20 first removed Pb from solutions then growth began resulting in black precipitates of Pb and iron sulfides. Transmission electron microscopic analyses of thin sections of D. desulfuricans G20 treated with 10 microM PbCl(2) in goethite- and quartz-free treatment showed the presence of a dense deposit of lead sulfide precipitates both in the periplasm and cytoplasm. However, thin sections of D. desulfuricans G20 treated with goethite, quartz, and PbCl(2) (26 microM soluble Pb) showed the presence of a dense deposit of iron sulfide precipitates both in the periplasm and cytoplasm. Energy-dispersive X-ray spectroscopy, selected area electron diffraction patterns, or X-ray diffraction analyses confirmed the structure of precipitated Pb inside the cell as galena (PbS) in goethite- and quartz-free treatments, and iron sulfides in treatments with goethite, quartz, and PbCl(2). Overall results suggest that even at the same soluble Pb concentration (26 microM), in the presence of goethite and quartz, apparent Pb toxicity to D. desulfuricans G20 decreased significantly. Further, accumulation of lead/iron sulfides inside D. desulfuricans G20 cells depended on the presence of goethite and quartz.