Initial results from a novel dual modality preclinical imager which combines non-contact fluorescence tomography (FT) and x-ray computed tomography (CT) for preclinical functional and anatomical in vivo imaging are presented. The anatomical data from CT provides a priori information to the FT reconstruction to create overlaid functional and anatomical images with accurate localization and quantification of fluorophore distribution. Phantoms with inclusions containing Indocyanine-Green (ICG), and with heterogeneous backgrounds including iodine in compartments at different concentrations for CT contrast, have been imaged with the dual modality FT/CT system. Anatomical information from attenuation maps and optical morphological information from absorption and scattering maps are used as a priori information in the FT reconstruction. Although ICG inclusions can be located without the a priori information, the recovered ICG concentration shows 75% error. When the a priori information is utilized, the ICG concentration can be recovered with only 15% error. Developing the ability to accurately quantify fluorophore concentration in anatomical regions of interest may provide a powerful tool for in vivo small animal imaging.