Aim: To determine whether acute or long-term exposure of the brain to mobile telephone radiofrequency (RF) fields produces activation of microglia, which normally respond rapidly to any change in their microenvironment.
Methods: Using a purpose designed exposure system at 900 MHz, mice were given a single, far-field whole body exposure at a specific absorption rate (SAR) of 4 W/kg for 60 min (acute) or on five successive days per week for 104 weeks (long-term). Control mice were sham-exposed or freely mobile in a cage to control for any stress caused by immobilisation in the exposure module. Positive control brains subjected to a stab wound were also included to confirm the ability of microglia to react to any neural stress. Brains were perfusion-fixed with 4% paraformaldehyde and representative regions of the cerebral cortex and hippocampus immunostained for ionised calcium binding adaptor molecule (Iba1), a specific microglial marker.
Results: There was no increase in microglial Iba1 expression in brains short or long-term exposed to mobile telephony microwaves compared to control (sham-exposed or freely moving caged mice) brains, while substantial microglial activation occurred in damaged positive control neural tissue.
Conclusion: Acute (60 minutes) or longer duration (2 years) exposure of murine brains to mobile telephone RF fields did not produce any microglial activation detectable by Iba1 immunostaining.