Organotypic skin models are frequently used for a wide range of applications and latterly also for dermatotoxicological studies. To evaluate their practicability for the investigation of xenobiotic metabolism in human skin we compared three types of organotypic skin models, acquired by purchase from different manufacturers, to a self-constructed in-house model with regard to cytochrome P450 (CYP) isoenzyme expression on mRNA and protein level and the inducibility of these enzymes by aryl hydrocarbon receptor ligands. To induce enzyme activity, models were treated with benzanthracene, liquor carbonis detergens, pix lithanthracis or dimethyl sulfoxide as a solvent control. RNA was isolated by phenol-chloroform extraction and purified. Gene expression patterns were studied by cDNA microarray analysis. Microarray data were confirmed by real-time PCR. For quality control of the models and to detect and localize enzyme expression, immunofluorescence staining was performed with antibodies against CYPs and structure proteins. The immunofluorescence staining demonstrated the regular structure of our models. We could provide evidence for the expression of CYP types 1A1, 1B1, 2E1, 2C and 3A5 in organotypic skin models. The expression of CYP1A1 and CYP1B1 was highly inducible by treatment with liquor carbonis detergens. The proof of the expression and inducibility of CYP enzymes in organotypic skin models suggests that skin equivalents are a valuable tool that can emulate CYP-dependent metabolism of drugs and other xenobiotics in human skin.
2010 S. Karger AG, Basel.