The design, synthesis, and structural characterization, both in solution by (1)H NMR and in the solid state by X-ray diffraction on single crystals, of a series of molecular gates based on Sn-porphyrin derivatives are presented. The molecular system is based on a porphyrin core bearing at the meso positions either phenyl or pyridyl groups as a stator, octahedral Sn(IV) cation located at the center of the porphyrin as a hinge, and different handles connected to the porphyrin through Sn-O axial bonds. The stability of the complexes in the presence of different acids is also reported.