Electronic and steric ligand effects both play major roles in organometallic chemistry and consequently in metal-mediated catalysis. Quantifying such parameters is of interest to better understand not only the parameters governing catalyst performance but also reaction mechanisms. Nowadays, ligand molecular architectures are becoming significantly more elaborate and existing models describing ligand sterics prove lacking. This review presents the development of a more general method to determine the steric parameter of organometallic ligands. Two case studies are presented: the tertiary phosphines and the N-heterocyclic carbenes.