Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study

Adv Genet. 2009:68:23-56. doi: 10.1016/S0065-2660(09)68002-0. Epub 2010 Jan 13.

Abstract

Studies of social behavior generally focus on interactions between two or more individual animals. However, these interactions are not simply between whole animals, but also occur between molecules that were produced by the interacting individuals. Such "molecular social interactions" can both influence and be influenced by the organismal-level social interactions. We illustrate this by reviewing the roles played by seminal fluid proteins (Sfps) in molecular social interactions between males and females of the fruit fly Drosophila melanogaster. Sfps, which are produced by males and transferred to females during mating, are involved in inherently social interactions with female-derived molecules, and they influence social interactions between males and females and between a female's past and potential future mates. Here, we explore four examples of molecular social interactions involving D. melanogaster Sfps: processes that influence mating, sperm storage, ovulation, and ejaculate transfer. We consider the molecular and organismal players involved in each interaction and the consequences of their interplay for the reproductive success of both sexes. We conclude with a discussion of the ways in which Sfps can both shape and be shaped by (in an evolutionary sense) the molecular social interactions in which they are involved.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism*
  • Female
  • Male
  • Seminal Plasma Proteins / genetics
  • Seminal Plasma Proteins / metabolism*
  • Sexual Behavior, Animal

Substances

  • Drosophila Proteins
  • Seminal Plasma Proteins