The role of adaptive immunity in obesity-associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T-cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4-22 weeks of a high-fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3(+) SVCs or in gene expression of CD3, interferon-γ (IFN-γ), or regulated upon activation, normal T-cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c(+) macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4(+) and CD8(+)) and elevated IFN-γ and RANTES gene expression were detected by 20-22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD-induced T-cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin-12 (IL-12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN-γ secretion from phorbol myristate acetate (PMA)/ionophore-stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T-cell enrichment and IFN-γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN-γ production suggests the contribution of CD4(+) and/or CD8(+) effectors to cell-mediated immune responses promoting HFD-induced AT inflammation and IR.