The current experiment aimed to study whether interactions with lipid metabolism possibly might explain the relative increased liver weight obtained in fish fed sub-optimal methionine levels. A basal diet based on a blend of plant proteins which is low in methionine (1.6 g Met/16 g N) was compared to a methionine adequate diet (2.2 g Met/16 g N) prepared by adding DL-methionine (2.4 g/kg) to the basal diet in the expense of wheat grain. Fish oil was used as the lipid source. The diets were balanced in all nutrients except methionine. The diets were fed to Atlantic salmon (500 g BW) for a period of 3 months. Feed intake did not differ, rendering the intake of all nutrients except methionine equal. Fish fed the low methionine diet had an increased liver size relative to body weight, indicating fat deposition in the liver. Fish given the sub-optimal methionine diet showed about six times higher fatty acid synthase (FAS) activity as compared to the fish fed the adequate methionine diet, indicating a higher de novo lipogenesis. A significant rise in the liver 18:1 to 18:0 fatty acid ratios also supported storage of lipids over fatty acid oxidation. Indeed, methionine limitation resulted in significantly higher TAG concentrations in the liver. Sub-optimal dietary methionine also resulted in lower hepatic taurine concentrations and the total bile acids concentrations were reduced in faeces and tended to be reduced in plasma. Taken together, our data show that salmon fed sub-optimal methionine levels had increased relative liver weight and developed signs commonly described in the early stage of non-alcoholic fatty liver disease in rodent models (increased FAS activity, changed fatty acid ratios and TAG accumulation).