Objectives: The objective was to develop a model with which to study the cellular and molecular events associated with nasal polyp progression. To accomplish this, we undertook to develop a system in which nondisrupted human nasal polyp tissue could be successfully implanted into severely immunocompromised mice, in which the histopathology of the original nasal polyp tissue, including inflammatory lymphocytes, epithelial and goblet cell hyperplasia, and subepithelial fibrosis, could be preserved for prolonged periods.
Methods: Small, non-disrupted pieces of human nasal polyp tissues were subcutaneously implanted into NOD-scid IL2rgamma(null) mice. Xenografts at 8 to 12 weeks after implantation were examined histologically and immunohistochemically to identify human inflammatory leukocytes and to determine whether the characteristic histopathologic characteristics of the nasal polyps were maintained for a prolonged period. The xenografts, spleen, lung, liver, and kidneys were examined histologically and immunohistochemically and were evaluated for changes in volume. The sera of these mice were assayed for human cytokines and immunoglobulin.
Results: Xenografts of human nasal polyp tissues were established after their subcutaneous implantation into NOD-scid IL2rgamma(null) mice. The xenografts were maintained in a viable and functional state for up to 3 months, and retained a histopathologic appearance similar to that of the original tissue, with a noticeable increase in goblet cell hyperplasia and marked mucus accumulation in the submucosal glands compared to the original nasal polyp tissue. Inflammatory lymphocytes present in the polyp microenvironment were predominantly human CD8+ T cells with an effector memory phenotype. Human CD4+ T cells, CD138+ plasma cells, and CD68+ macrophages were also observed in the xenografts. Human immunoglobulin and interferon-gamma were detected in the sera of xenograft-bearing mice. The polyp-associated lymphocytes proliferated and were found to migrate from the xenografts to the spleens of the recipient mice, resulting in a significant splenomegaly. A progressive increase in the volume of the xenografts was observed with little or no evidence of mouse cell infiltration into the human leukocyte antigen-positive human tissue. An average twofold increase in polyp volume was found at 3 months after engraftment.
Conclusions: The use of innate and adaptive immunodeficient NOD-scid mice homozygous for targeted mutations in the interleukin-2 receptor gamma-chain locus NOD-scid IL2rgamma(null) for establishing xenografts of nondisrupted pieces of human nasal polyp tissues represents a significant improvement over the previously reported xenograft model that used partially immunoincompetent CB17-scid mice as tissue recipients. The absence of the interleukin-2 receptor gamma-chain results in complete elimination of natural killer cell development, as well as severe impairments in T and B cell development. These mice, lacking both innate and adaptive immune responses, significantly improve upon the long-term engraftment of human nasal polyp tissues and provide a model with which to study how nasal polyp-associated lymphocytes and their secreted biologically active products contribute to the histopathology and progression of this chronic inflammatory disease.