IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells

J Immunol. 2010 Mar 1;184(5):2281-8. doi: 10.4049/jimmunol.0902574. Epub 2010 Jan 29.

Abstract

The role of immune responses in tumor development is a central issue for tumor biology and immunology. IL-17 is an important cytokine for inflammatory and autoimmune diseases. Although IL-17-producing cells are detected in cancer patients and tumor-bearing mice, the role of IL-17 in tumor development is controversial, and mechanisms remain to be fully elucidated. In the current study, we found that the development of tumors was inhibited in IL-17R-deficient mice. A defect in IFN-gammaR increased tumor growth, whereas tumor growth was inhibited in mice that were deficient in both IL-17R and IFN-gammaR compared with wild-type animals. Further experiments showed that neutralization of IL-17 by Abs inhibited tumor growth in wild-type mice, whereas systemic administration of IL-17 promoted tumor growth. The IL-17R deficiency increased CD8 T cell infiltration, whereas it reduced the infiltration of myeloid-derived suppressor cells (MDSCs) in tumors. In contrast, administration of IL-17 inhibited CD8 T cell infiltration and increased MDSCs in tumors. Further analysis indicated that IL-17 was required for the development and tumor-promoting activity of MDSCs in tumor-bearing mice. These data demonstrate that IL-17-mediated responses promote tumor development through the induction of tumor-promoting microenvironments at tumor sites. IL-17-mediated regulation of MDSCs is a primary mechanism for its tumor-promoting effects. The study provides novel insights into the role of IL-17 in tumor development and has major implications for targeting IL-17 in treatment of tumors.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antibodies / immunology
  • Antibodies / pharmacology
  • Apoptosis / immunology
  • CD8-Positive T-Lymphocytes / immunology*
  • CD8-Positive T-Lymphocytes / pathology
  • Cell Line, Tumor
  • Flow Cytometry
  • In Situ Nick-End Labeling
  • Interferon gamma Receptor
  • Interleukin-17 / immunology*
  • Interleukin-17 / pharmacology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Myeloid Cells / immunology*
  • Myeloid Cells / pathology
  • Neoplasms, Experimental / genetics
  • Neoplasms, Experimental / immunology*
  • Neoplasms, Experimental / pathology
  • Receptors, Interferon / deficiency
  • Receptors, Interferon / genetics
  • Receptors, Interferon / immunology
  • Receptors, Interleukin-17 / deficiency
  • Receptors, Interleukin-17 / genetics
  • Receptors, Interleukin-17 / immunology
  • Tumor Burden / drug effects
  • Tumor Burden / immunology

Substances

  • Antibodies
  • Interleukin-17
  • Receptors, Interferon
  • Receptors, Interleukin-17