Structures and phase transitions in (MoO2)2P2O7

Inorg Chem. 2010 Mar 1;49(5):2290-301. doi: 10.1021/ic902166j.

Abstract

We report structural investigations into (MoO(2))(2)P(2)O(7) using a combination of X-ray, neutron and electron diffraction, and solid-state NMR supported by first principles quantum chemical calculations. These reveal a series of phase transitions on cooling at temperatures of 377 and 325 K. The high temperature gamma-phase has connectivity consistent with that proposed by Kierkegaard at room temperature (but with improved bond length distribution), and contains 13 unique atoms in space group Pnma with lattice parameters a = 12.6577(1) A, b = 6.3095(1) A, c = 10.4161(1) A, and volume 831.87(1) A(3) from synchrotron data at 423 K. The low temperature alpha-structure was indexed from electron diffraction data and contains 60 unique atoms in space group P2(1)/c with cell parameters a = 17.8161(3) A, b = 10.3672(1) A, c = 17.8089(3) A, beta = 90.2009(2) degrees, and volume 3289.34(7) A(3) at 250 K. First principles calculations of (31)P chemical shift and J couplings were used to establish correlation between local structure and observed NMR parameters, and 1D and 2D (31)P solid-state NMR used to validate the proposed crystal structures. The intermediate beta-phase is believed to adopt an incommensurately modulated structure; (31)P NMR suggests a smooth structural evolution in this region.