To date, a series of chiral selectors have been utilized successfully in capillary electrophoresis (CE). Among these various chiral selectors, macrocyclic antibiotics have been demonstrated to represent powerful enantioselectivity towards many chiral compounds. Differing from macrocyclic antibiotics, the use of lincosamide antibiotics as chiral selectors has not been reported previously. In our recent work, clindamycin phosphate belonging to the group of lincosamides has been first used as a chiral selector in capillary zone electrophoresis (CZE). In this paper, a micellar electrokinetic chromatography (MEKC) method has been developed for the evaluation of enantioseparation capability of this novel chiral selector towards several racemic basic drugs. As observed during the course of this work, clindamycin phosphate allowed excellent separation of the enantiomers of nefopam, citalopram, tryptophan, chlorphenamine, propranolol and metoprolol, as well as partial enantioresolution of tryptophan methyl ester and cetirizine. In this MEKC chiral separation system, different types of anionic surfactants, organic additives and background electrolytes were tested, and satisfactory enantioseparations of basic drugs above-mentioned were achieved using sodium dodecyl sulfate (SDS) as the surfactant, isopropanol as the organic additive, and phosphate as the background electrolyte. Furthermore, both migration times and enantioseparation of the analytes were influenced by several experimental parameters such as pH of the BGE, clindamycin phosphate and SDS concentrations, phosphate and isopropanol concentrations, and applied voltage. Consequently, the effects of these factors on enantioseparations of the studied basic drugs were systematically investigated in order to evaluate the stereoselectivity of clindamycin phosphate in MEKC.
Copyright (c) 2010 Elsevier B.V. All rights reserved.