The main objective of the present work was to develop a wheat genotype containing both the recessive crossability alleles (kr1kr1kr2kr2), allowing high crossability between 6x wheat and diploid rye, and the 1BL.1RS wheat/rye translocation chromosome. This wheat genotype could be used as a recipient partner in wheat-rye crosses for the efficient introduction of new allelic variation into 1RS in translocation wheats. After crossing the wheat cultivars 'Mv Magdaléna' and 'Mv Béres', which carry the 1BL.1RS translocation involving the 1RS chromosome arm from 'Petkus', with the line 'Mv9 kr1', 117 F(2) plants were analysed for crossability, ten of which had higher than 50% seed set with rye and thus presumably carried the kr1kr1kr2kr2 alleles. Four of the ten plants contained the 1BL.1RS translocation in the disomic condition as detected by genomic in situ hybridization (GISH). The wheat x rye F(1) hybrids produced between these lines and the rye cultivar 'Kriszta' were analysed in meiosis using GISH. 1BL.1RS/1R chromosome pairing was detected in 62.4% of the pollen mother cells. The use of fluorescent in situ hybridization (FISH) with the repetitive DNA probes pSc119.2, Afa family and pTa71 allowed the 1R and 1BL.1RS chromosomes to be identified. The presence of the 1RS arm from 'Kriszta' besides that of 'Petkus' was demonstrated in the F(1) hybrids using the rye SSR markers RMS13 and SCM9. In four of the 22 BC(1) progenies analysed, only 'Kriszta'-specific bands were observed with these markers, though the presence of the 1BL.1RS translocation was detected using GISH. It can be concluded that recombination occurred between the 'Petkus' and 'Kriszta' 1RS chromosome arms in the translocated chromosome in these plants.