Microtubules are essential components of the cytoskeleton that participate in a variety of cellular processes such as cell division and migration. In addition, there is a growing body of evidence implicating a role for microtubules in intracellular viral transport. In this study, we found that pharmacological disruption of microtubules remarkably blocked bovine immunodeficiency virus (BIV) movement from the cell periphery to the perinuclear region, a process known as retrograde transport. A similar effect was observed by inhibiting function of the microtubule-associated motor protein dynein. By yeast two-hybrid assay, we found that the capsid protein (CA) of BIV interacted with the dynein light-chain component LC8. Immunoprecipitation and GST-pulldown assays further demonstrated an interaction between CA and LC8 in mammalian cells. In addition, our data revealed LC8 as a linker between BIV particles and microtubules. Retrograde transport of BIV was significantly inhibited by knockdown of LC8 expression. Our findings present the first evidence that incoming BIV particles employ host microtubule/dynein machinery for transport towards the perinuclear region. In addition, our data indicate that the LC8-CA interaction is a potential target for the design of antiviral strategies.